A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem

نویسندگان

  • Roberto D. Galvão
  • Luis Gonzalo Acosta Espejo
  • Brian Boffey
چکیده

We compare heuristics based on Lagrangean and surrogate relaxations of the Maximal Covering Location Problem (MCLP). The Lagrangean relaxation of MCLP used in this paper has the integrality property and the surrogate relaxed problem we solve is the LP relaxation of the original 0ÿ1 knapsack problem. The heuristics were compared using 331 test problems available in the literature, corresponding to networks ranging from 55 to 900 vertices. The gaps obtained with both heuristics were very low and did not di€er substantially among themselves for the several problem sets used, in accordance with theoretical results reviewed in the paper. When the initial set of multipliers was determined using a valid bound for MCLP the computing times did not di€er signi®cantly between the Lagrangean and surrogate heuristics. Ó 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General form of a cooperative gradual maximal covering location problem

Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location–allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering ...

متن کامل

A New Heuristic Solution Method for Maximal Covering Location-Allocation Problem with M/M/1 Queueing System

We consider the queueing maximal covering location-allocation problem (QM-CLAP) with an M/M/1 queueing system. We propose a new solution procedure based on decomposition of the problem into smaller sub-problems. We solve the resulting sub-problems both with a branch and bound algorithm and with the meta-heuristic GRASP. We also solve the entire model with GRASP. Computational results for these ...

متن کامل

Mathematical Model for Bi-objective Maximal Hub Covering Problem with Periodic Variations of Parameters

The problem of maximal hub covering as a challenging problem in operation research. Transportation programming seeks to find an optimal location of a set of hubs to reach maximum flow in a network. Since the main structure's parameters of the problem such as origin-destination flows, costs and travel time, change periodically in the real world applications, new issues arise in handling it. In t...

متن کامل

Maximal covering location-allocation problem with M/M/k queuing system and side constraints

  We consider the maximal covering location-allocation problem with multiple servers. The objective is to maximize the population covered, subject to constraints on the number of service centers, total number of servers in all centers, and the average waiting time at each center. Each center operates as an M/M/k queuing system with variable number of servers. The total costs of establishing cen...

متن کامل

Efficient Solution Procedure to Develop Maximal Covering Location Problem Under Uncertainty (Using GA and Simulation)

  In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2000